Metamath Proof Explorer


Theorem met0

Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of Gleason p. 223. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion met0
|- ( ( D e. ( Met ` X ) /\ A e. X ) -> ( A D A ) = 0 )

Proof

Step Hyp Ref Expression
1 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
2 xmet0
 |-  ( ( D e. ( *Met ` X ) /\ A e. X ) -> ( A D A ) = 0 )
3 1 2 sylan
 |-  ( ( D e. ( Met ` X ) /\ A e. X ) -> ( A D A ) = 0 )