Metamath Proof Explorer


Theorem met0

Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of Gleason p. 223. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion met0 DMetXAXADA=0

Proof

Step Hyp Ref Expression
1 metxmet DMetXD∞MetX
2 xmet0 D∞MetXAXADA=0
3 1 2 sylan DMetXAXADA=0