Metamath Proof Explorer


Theorem nrmmetd

Description: Show that a group norm generates a metric. Part of Definition 2.2-1 of Kreyszig p. 58. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nrmmetd.x X=BaseG
nrmmetd.m -˙=-G
nrmmetd.z 0˙=0G
nrmmetd.g φGGrp
nrmmetd.f φF:X
nrmmetd.1 φxXFx=0x=0˙
nrmmetd.2 φxXyXFx-˙yFx+Fy
Assertion nrmmetd φF-˙MetX

Proof

Step Hyp Ref Expression
1 nrmmetd.x X=BaseG
2 nrmmetd.m -˙=-G
3 nrmmetd.z 0˙=0G
4 nrmmetd.g φGGrp
5 nrmmetd.f φF:X
6 nrmmetd.1 φxXFx=0x=0˙
7 nrmmetd.2 φxXyXFx-˙yFx+Fy
8 1 2 grpsubf GGrp-˙:X×XX
9 4 8 syl φ-˙:X×XX
10 fco F:X-˙:X×XXF-˙:X×X
11 5 9 10 syl2anc φF-˙:X×X
12 opelxpi aXbXabX×X
13 fvco3 -˙:X×XXabX×XF-˙ab=F-˙ab
14 9 12 13 syl2an φaXbXF-˙ab=F-˙ab
15 df-ov aF-˙b=F-˙ab
16 df-ov a-˙b=-˙ab
17 16 fveq2i Fa-˙b=F-˙ab
18 14 15 17 3eqtr4g φaXbXaF-˙b=Fa-˙b
19 18 eqeq1d φaXbXaF-˙b=0Fa-˙b=0
20 6 ralrimiva φxXFx=0x=0˙
21 1 2 grpsubcl GGrpaXbXa-˙bX
22 21 3expb GGrpaXbXa-˙bX
23 4 22 sylan φaXbXa-˙bX
24 fveq2 x=a-˙bFx=Fa-˙b
25 24 eqeq1d x=a-˙bFx=0Fa-˙b=0
26 eqeq1 x=a-˙bx=0˙a-˙b=0˙
27 25 26 bibi12d x=a-˙bFx=0x=0˙Fa-˙b=0a-˙b=0˙
28 27 rspccva xXFx=0x=0˙a-˙bXFa-˙b=0a-˙b=0˙
29 20 23 28 syl2an2r φaXbXFa-˙b=0a-˙b=0˙
30 1 3 2 grpsubeq0 GGrpaXbXa-˙b=0˙a=b
31 30 3expb GGrpaXbXa-˙b=0˙a=b
32 4 31 sylan φaXbXa-˙b=0˙a=b
33 19 29 32 3bitrd φaXbXaF-˙b=0a=b
34 5 adantr φaXbXcXF:X
35 23 adantrr φaXbXcXa-˙bX
36 34 35 ffvelcdmd φaXbXcXFa-˙b
37 4 adantr φaXbXcXGGrp
38 simprll φaXbXcXaX
39 simprr φaXbXcXcX
40 1 2 grpsubcl GGrpaXcXa-˙cX
41 37 38 39 40 syl3anc φaXbXcXa-˙cX
42 34 41 ffvelcdmd φaXbXcXFa-˙c
43 simprlr φaXbXcXbX
44 1 2 grpsubcl GGrpbXcXb-˙cX
45 37 43 39 44 syl3anc φaXbXcXb-˙cX
46 34 45 ffvelcdmd φaXbXcXFb-˙c
47 42 46 readdcld φaXbXcXFa-˙c+Fb-˙c
48 1 2 grpsubcl GGrpcXaXc-˙aX
49 37 39 38 48 syl3anc φaXbXcXc-˙aX
50 34 49 ffvelcdmd φaXbXcXFc-˙a
51 1 2 grpsubcl GGrpcXbXc-˙bX
52 37 39 43 51 syl3anc φaXbXcXc-˙bX
53 34 52 ffvelcdmd φaXbXcXFc-˙b
54 50 53 readdcld φaXbXcXFc-˙a+Fc-˙b
55 1 2 grpnnncan2 GGrpaXbXcXa-˙c-˙b-˙c=a-˙b
56 37 38 43 39 55 syl13anc φaXbXcXa-˙c-˙b-˙c=a-˙b
57 56 fveq2d φaXbXcXFa-˙c-˙b-˙c=Fa-˙b
58 7 ralrimivva φxXyXFx-˙yFx+Fy
59 58 adantr φaXbXcXxXyXFx-˙yFx+Fy
60 fvoveq1 x=a-˙cFx-˙y=Fa-˙c-˙y
61 fveq2 x=a-˙cFx=Fa-˙c
62 61 oveq1d x=a-˙cFx+Fy=Fa-˙c+Fy
63 60 62 breq12d x=a-˙cFx-˙yFx+FyFa-˙c-˙yFa-˙c+Fy
64 oveq2 y=b-˙ca-˙c-˙y=a-˙c-˙b-˙c
65 64 fveq2d y=b-˙cFa-˙c-˙y=Fa-˙c-˙b-˙c
66 fveq2 y=b-˙cFy=Fb-˙c
67 66 oveq2d y=b-˙cFa-˙c+Fy=Fa-˙c+Fb-˙c
68 65 67 breq12d y=b-˙cFa-˙c-˙yFa-˙c+FyFa-˙c-˙b-˙cFa-˙c+Fb-˙c
69 63 68 rspc2va a-˙cXb-˙cXxXyXFx-˙yFx+FyFa-˙c-˙b-˙cFa-˙c+Fb-˙c
70 41 45 59 69 syl21anc φaXbXcXFa-˙c-˙b-˙cFa-˙c+Fb-˙c
71 57 70 eqbrtrrd φaXbXcXFa-˙bFa-˙c+Fb-˙c
72 eleq1w b=cbXcX
73 72 anbi2d b=caXbXaXcX
74 73 anbi2d b=cφaXbXφaXcX
75 oveq2 b=ca-˙b=a-˙c
76 75 fveq2d b=cFa-˙b=Fa-˙c
77 fvoveq1 b=cFb-˙a=Fc-˙a
78 76 77 breq12d b=cFa-˙bFb-˙aFa-˙cFc-˙a
79 74 78 imbi12d b=cφaXbXFa-˙bFb-˙aφaXcXFa-˙cFc-˙a
80 4 adantr φaXbXGGrp
81 1 3 grpidcl GGrp0˙X
82 80 81 syl φaXbX0˙X
83 simprr φaXbXbX
84 simprl φaXbXaX
85 1 2 grpsubcl GGrpbXaXb-˙aX
86 80 83 84 85 syl3anc φaXbXb-˙aX
87 58 adantr φaXbXxXyXFx-˙yFx+Fy
88 fvoveq1 x=0˙Fx-˙y=F0˙-˙y
89 fveq2 x=0˙Fx=F0˙
90 89 oveq1d x=0˙Fx+Fy=F0˙+Fy
91 88 90 breq12d x=0˙Fx-˙yFx+FyF0˙-˙yF0˙+Fy
92 oveq2 y=b-˙a0˙-˙y=0˙-˙b-˙a
93 92 fveq2d y=b-˙aF0˙-˙y=F0˙-˙b-˙a
94 fveq2 y=b-˙aFy=Fb-˙a
95 94 oveq2d y=b-˙aF0˙+Fy=F0˙+Fb-˙a
96 93 95 breq12d y=b-˙aF0˙-˙yF0˙+FyF0˙-˙b-˙aF0˙+Fb-˙a
97 91 96 rspc2va 0˙Xb-˙aXxXyXFx-˙yFx+FyF0˙-˙b-˙aF0˙+Fb-˙a
98 82 86 87 97 syl21anc φaXbXF0˙-˙b-˙aF0˙+Fb-˙a
99 eqid invgG=invgG
100 1 2 99 3 grpinvval2 GGrpb-˙aXinvgGb-˙a=0˙-˙b-˙a
101 4 86 100 syl2an2r φaXbXinvgGb-˙a=0˙-˙b-˙a
102 1 2 99 grpinvsub GGrpbXaXinvgGb-˙a=a-˙b
103 80 83 84 102 syl3anc φaXbXinvgGb-˙a=a-˙b
104 101 103 eqtr3d φaXbX0˙-˙b-˙a=a-˙b
105 104 fveq2d φaXbXF0˙-˙b-˙a=Fa-˙b
106 4 81 syl φ0˙X
107 pm5.501 x=0˙Fx=0x=0˙Fx=0
108 bicom x=0˙Fx=0Fx=0x=0˙
109 107 108 bitrdi x=0˙Fx=0Fx=0x=0˙
110 89 eqeq1d x=0˙Fx=0F0˙=0
111 109 110 bitr3d x=0˙Fx=0x=0˙F0˙=0
112 111 rspccva xXFx=0x=0˙0˙XF0˙=0
113 20 106 112 syl2anc φF0˙=0
114 113 adantr φaXbXF0˙=0
115 114 oveq1d φaXbXF0˙+Fb-˙a=0+Fb-˙a
116 5 adantr φaXbXF:X
117 116 86 ffvelcdmd φaXbXFb-˙a
118 117 recnd φaXbXFb-˙a
119 118 addlidd φaXbX0+Fb-˙a=Fb-˙a
120 115 119 eqtrd φaXbXF0˙+Fb-˙a=Fb-˙a
121 98 105 120 3brtr3d φaXbXFa-˙bFb-˙a
122 79 121 chvarvv φaXcXFa-˙cFc-˙a
123 122 adantrlr φaXbXcXFa-˙cFc-˙a
124 eleq1w a=baXbX
125 124 anbi1d a=baXcXbXcX
126 125 anbi2d a=bφaXcXφbXcX
127 fvoveq1 a=bFa-˙c=Fb-˙c
128 oveq2 a=bc-˙a=c-˙b
129 128 fveq2d a=bFc-˙a=Fc-˙b
130 127 129 breq12d a=bFa-˙cFc-˙aFb-˙cFc-˙b
131 126 130 imbi12d a=bφaXcXFa-˙cFc-˙aφbXcXFb-˙cFc-˙b
132 131 122 chvarvv φbXcXFb-˙cFc-˙b
133 132 adantrll φaXbXcXFb-˙cFc-˙b
134 42 46 50 53 123 133 le2addd φaXbXcXFa-˙c+Fb-˙cFc-˙a+Fc-˙b
135 36 47 54 71 134 letrd φaXbXcXFa-˙bFc-˙a+Fc-˙b
136 18 adantrr φaXbXcXaF-˙b=Fa-˙b
137 opelxpi cXaXcaX×X
138 39 38 137 syl2anc φaXbXcXcaX×X
139 fvco3 -˙:X×XXcaX×XF-˙ca=F-˙ca
140 9 138 139 syl2an2r φaXbXcXF-˙ca=F-˙ca
141 df-ov cF-˙a=F-˙ca
142 df-ov c-˙a=-˙ca
143 142 fveq2i Fc-˙a=F-˙ca
144 140 141 143 3eqtr4g φaXbXcXcF-˙a=Fc-˙a
145 opelxpi cXbXcbX×X
146 39 43 145 syl2anc φaXbXcXcbX×X
147 fvco3 -˙:X×XXcbX×XF-˙cb=F-˙cb
148 9 146 147 syl2an2r φaXbXcXF-˙cb=F-˙cb
149 df-ov cF-˙b=F-˙cb
150 df-ov c-˙b=-˙cb
151 150 fveq2i Fc-˙b=F-˙cb
152 148 149 151 3eqtr4g φaXbXcXcF-˙b=Fc-˙b
153 144 152 oveq12d φaXbXcXcF-˙a+cF-˙b=Fc-˙a+Fc-˙b
154 135 136 153 3brtr4d φaXbXcXaF-˙bcF-˙a+cF-˙b
155 154 expr φaXbXcXaF-˙bcF-˙a+cF-˙b
156 155 ralrimiv φaXbXcXaF-˙bcF-˙a+cF-˙b
157 33 156 jca φaXbXaF-˙b=0a=bcXaF-˙bcF-˙a+cF-˙b
158 157 ralrimivva φaXbXaF-˙b=0a=bcXaF-˙bcF-˙a+cF-˙b
159 1 fvexi XV
160 ismet XVF-˙MetXF-˙:X×XaXbXaF-˙b=0a=bcXaF-˙bcF-˙a+cF-˙b
161 159 160 ax-mp F-˙MetXF-˙:X×XaXbXaF-˙b=0a=bcXaF-˙bcF-˙a+cF-˙b
162 11 158 161 sylanbrc φF-˙MetX