Metamath Proof Explorer


Theorem le2addd

Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
lt2addd.4 φD
le2addd.5 φAC
le2addd.6 φBD
Assertion le2addd φA+BC+D

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 lt2addd.4 φD
5 le2addd.5 φAC
6 le2addd.6 φBD
7 le2add ABCDACBDA+BC+D
8 1 2 3 4 7 syl22anc φACBDA+BC+D
9 5 6 8 mp2and φA+BC+D