Metamath Proof Explorer


Theorem le2subd

Description: Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
lt2addd.4 φ D
le2addd.5 φ A C
le2addd.6 φ B D
Assertion le2subd φ A D C B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 lt2addd.4 φ D
5 le2addd.5 φ A C
6 le2addd.6 φ B D
7 le2sub A D C B A C B D A D C B
8 1 4 3 2 7 syl22anc φ A C B D A D C B
9 5 6 8 mp2and φ A D C B