Metamath Proof Explorer


Theorem le2sub

Description: Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Assertion le2sub ABCDACDBABCD

Proof

Step Hyp Ref Expression
1 simpll ABCDA
2 simprl ABCDC
3 simplr ABCDB
4 lesub1 ACBACABCB
5 1 2 3 4 syl3anc ABCDACABCB
6 simprr ABCDD
7 lesub2 DBCDBCBCD
8 6 3 2 7 syl3anc ABCDDBCBCD
9 5 8 anbi12d ABCDACDBABCBCBCD
10 resubcl ABAB
11 10 adantr ABCDAB
12 2 3 resubcld ABCDCB
13 resubcl CDCD
14 13 adantl ABCDCD
15 letr ABCBCDABCBCBCDABCD
16 11 12 14 15 syl3anc ABCDABCBCBCDABCD
17 9 16 sylbid ABCDACDBABCD