Metamath Proof Explorer


Theorem lesub1

Description: Subtraction from both sides of 'less than or equal to'. (Contributed by NM, 13-May-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesub1 ABCABACBC

Proof

Step Hyp Ref Expression
1 simp1 ABCA
2 simp3 ABCC
3 simp2 ABCB
4 3 2 resubcld ABCBC
5 lesubadd ACBCACBCAB-C+C
6 1 2 4 5 syl3anc ABCACBCAB-C+C
7 3 recnd ABCB
8 2 recnd ABCC
9 7 8 npcand ABCB-C+C=B
10 9 breq2d ABCAB-C+CAB
11 6 10 bitr2d ABCABACBC