Metamath Proof Explorer


Theorem lesubadd

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesubadd ABCABCAC+B

Proof

Step Hyp Ref Expression
1 simp1 ABCA
2 simp2 ABCB
3 1 2 resubcld ABCAB
4 simp3 ABCC
5 leadd1 ABCBABCA-B+BC+B
6 3 4 2 5 syl3anc ABCABCA-B+BC+B
7 1 recnd ABCA
8 2 recnd ABCB
9 7 8 npcand ABCA-B+B=A
10 9 breq1d ABCA-B+BC+BAC+B
11 6 10 bitrd ABCABCAC+B