| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							resubcld | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A - B ) e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							leadd1 | 
							 |-  ( ( ( A - B ) e. RR /\ C e. RR /\ B e. RR ) -> ( ( A - B ) <_ C <-> ( ( A - B ) + B ) <_ ( C + B ) ) )  | 
						
						
							| 6 | 
							
								3 4 2 5
							 | 
							syl3anc | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> ( ( A - B ) + B ) <_ ( C + B ) ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							recnd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC )  | 
						
						
							| 8 | 
							
								2
							 | 
							recnd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							npcand | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) + B ) = A )  | 
						
						
							| 10 | 
							
								9
							 | 
							breq1d | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A - B ) + B ) <_ ( C + B ) <-> A <_ ( C + B ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							bitrd | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( C + B ) ) )  |