Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
2 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
3 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
4 |
3 2
|
resubcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B - C ) e. RR ) |
5 |
|
lesubadd |
|- ( ( A e. RR /\ C e. RR /\ ( B - C ) e. RR ) -> ( ( A - C ) <_ ( B - C ) <-> A <_ ( ( B - C ) + C ) ) ) |
6 |
1 2 4 5
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - C ) <_ ( B - C ) <-> A <_ ( ( B - C ) + C ) ) ) |
7 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
8 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
9 |
7 8
|
npcand |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B - C ) + C ) = B ) |
10 |
9
|
breq2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( ( B - C ) + C ) <-> A <_ B ) ) |
11 |
6 10
|
bitr2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A - C ) <_ ( B - C ) ) ) |