Step |
Hyp |
Ref |
Expression |
1 |
|
leadd2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( C + A ) <_ ( C + B ) ) ) |
2 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
3 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
4 |
2 3
|
readdcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) e. RR ) |
5 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
6 |
|
lesubadd |
|- ( ( ( C + A ) e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C + A ) - B ) <_ C <-> ( C + A ) <_ ( C + B ) ) ) |
7 |
4 5 2 6
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C + A ) - B ) <_ C <-> ( C + A ) <_ ( C + B ) ) ) |
8 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
9 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
10 |
5
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
11 |
8 9 10
|
addsubd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) - B ) = ( ( C - B ) + A ) ) |
12 |
11
|
breq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C + A ) - B ) <_ C <-> ( ( C - B ) + A ) <_ C ) ) |
13 |
1 7 12
|
3bitr2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( ( C - B ) + A ) <_ C ) ) |
14 |
2 5
|
resubcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C - B ) e. RR ) |
15 |
|
leaddsub |
|- ( ( ( C - B ) e. RR /\ A e. RR /\ C e. RR ) -> ( ( ( C - B ) + A ) <_ C <-> ( C - B ) <_ ( C - A ) ) ) |
16 |
14 3 2 15
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C - B ) + A ) <_ C <-> ( C - B ) <_ ( C - A ) ) ) |
17 |
13 16
|
bitrd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( C - B ) <_ ( C - A ) ) ) |