Metamath Proof Explorer


Theorem lesub2

Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesub2 ABCABCBCA

Proof

Step Hyp Ref Expression
1 leadd2 ABCABC+AC+B
2 simp3 ABCC
3 simp1 ABCA
4 2 3 readdcld ABCC+A
5 simp2 ABCB
6 lesubadd C+ABCC+A-BCC+AC+B
7 4 5 2 6 syl3anc ABCC+A-BCC+AC+B
8 2 recnd ABCC
9 3 recnd ABCA
10 5 recnd ABCB
11 8 9 10 addsubd ABCC+A-B=C-B+A
12 11 breq1d ABCC+A-BCC-B+AC
13 1 7 12 3bitr2d ABCABC-B+AC
14 2 5 resubcld ABCCB
15 leaddsub CBACC-B+ACCBCA
16 14 3 2 15 syl3anc ABCC-B+ACCBCA
17 13 16 bitrd ABCABCBCA