Metamath Proof Explorer


Theorem ltsub1

Description: Subtraction from both sides of 'less than'. (Contributed by FL, 3-Jan-2008) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltsub1 ABCA<BAC<BC

Proof

Step Hyp Ref Expression
1 lesub1 BACBABCAC
2 1 3com12 ABCBABCAC
3 2 notbid ABC¬BA¬BCAC
4 simp1 ABCA
5 simp2 ABCB
6 4 5 ltnled ABCA<B¬BA
7 simp3 ABCC
8 4 7 resubcld ABCAC
9 5 7 resubcld ABCBC
10 8 9 ltnled ABCAC<BC¬BCAC
11 3 6 10 3bitr4d ABCA<BAC<BC