Metamath Proof Explorer


Theorem addsubd

Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
Assertion addsubd φA+B-C=A-C+B

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 addsub ABCA+B-C=A-C+B
5 1 2 3 4 syl3anc φA+B-C=A-C+B