Metamath Proof Explorer
Description: Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
negidd.1 |
|
|
|
pncand.2 |
|
|
|
subaddd.3 |
|
|
Assertion |
subadd23d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
negidd.1 |
|
2 |
|
pncand.2 |
|
3 |
|
subaddd.3 |
|
4 |
|
subadd23 |
|
5 |
1 2 3 4
|
syl3anc |
|