Metamath Proof Explorer


Theorem subadd23d

Description: Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
Assertion subadd23d φ A - B + C = A + C - B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 subadd23 A B C A - B + C = A + C - B
5 1 2 3 4 syl3anc φ A - B + C = A + C - B