Metamath Proof Explorer


Theorem addsub12d

Description: Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
Assertion addsub12d φA+B-C=B+A-C

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 addsub12 ABCA+B-C=B+A-C
5 1 2 3 4 syl3anc φA+B-C=B+A-C