Metamath Proof Explorer


Theorem ltleaddd

Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
lt2addd.4 φ D
ltleaddd.5 φ A < C
ltleaddd.6 φ B D
Assertion ltleaddd φ A + B < C + D

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 lt2addd.4 φ D
5 ltleaddd.5 φ A < C
6 ltleaddd.6 φ B D
7 ltleadd A B C D A < C B D A + B < C + D
8 1 2 3 4 7 syl22anc φ A < C B D A + B < C + D
9 5 6 8 mp2and φ A + B < C + D