Metamath Proof Explorer


Theorem ltleaddd

Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
lt2addd.4 φD
ltleaddd.5 φA<C
ltleaddd.6 φBD
Assertion ltleaddd φA+B<C+D

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 lt2addd.4 φD
5 ltleaddd.5 φA<C
6 ltleaddd.6 φBD
7 ltleadd ABCDA<CBDA+B<C+D
8 1 2 3 4 7 syl22anc φA<CBDA+B<C+D
9 5 6 8 mp2and φA+B<C+D