Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
lt2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
ltleaddd.5 | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | ||
ltleaddd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | ||
Assertion | ltleaddd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
4 | lt2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
5 | ltleaddd.5 | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | |
6 | ltleaddd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | |
7 | ltleadd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) | |
8 | 1 2 3 4 7 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) ) |
9 | 5 6 8 | mp2and | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |