Metamath Proof Explorer


Theorem le2add

Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion le2add ABCDACBDA+BC+D

Proof

Step Hyp Ref Expression
1 simpll ABCDA
2 simprl ABCDC
3 simplr ABCDB
4 leadd1 ACBACA+BC+B
5 1 2 3 4 syl3anc ABCDACA+BC+B
6 simprr ABCDD
7 leadd2 BDCBDC+BC+D
8 3 6 2 7 syl3anc ABCDBDC+BC+D
9 5 8 anbi12d ABCDACBDA+BC+BC+BC+D
10 1 3 readdcld ABCDA+B
11 2 3 readdcld ABCDC+B
12 2 6 readdcld ABCDC+D
13 letr A+BC+BC+DA+BC+BC+BC+DA+BC+D
14 10 11 12 13 syl3anc ABCDA+BC+BC+BC+DA+BC+D
15 9 14 sylbid ABCDACBDA+BC+D