Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005) (Proof shortened by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | le2add | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | simprl | |
|
3 | simplr | |
|
4 | leadd1 | |
|
5 | 1 2 3 4 | syl3anc | |
6 | simprr | |
|
7 | leadd2 | |
|
8 | 3 6 2 7 | syl3anc | |
9 | 5 8 | anbi12d | |
10 | 1 3 | readdcld | |
11 | 2 3 | readdcld | |
12 | 2 6 | readdcld | |
13 | letr | |
|
14 | 10 11 12 13 | syl3anc | |
15 | 9 14 | sylbid | |