Metamath Proof Explorer


Theorem letrd

Description: Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
letrd.3 φC
letrd.4 φAB
letrd.5 φBC
Assertion letrd φAC

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 letrd.3 φC
4 letrd.4 φAB
5 letrd.5 φBC
6 letr ABCABBCAC
7 1 2 3 6 syl3anc φABBCAC
8 4 5 7 mp2and φAC