| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubpropd.b |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 2 |
|
grpsubpropd.p |
⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 3 |
|
eqidd |
⊢ ( 𝜑 → 𝑎 = 𝑎 ) |
| 4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 5 |
2
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 6 |
4 1 5
|
grpinvpropd |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) |
| 8 |
2 3 7
|
oveq123d |
⊢ ( 𝜑 → ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 9 |
1 1 8
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 12 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 13 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 14 |
10 11 12 13
|
grpsubfval |
⊢ ( -g ‘ 𝐺 ) = ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 16 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 17 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
| 18 |
|
eqid |
⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) |
| 19 |
15 16 17 18
|
grpsubfval |
⊢ ( -g ‘ 𝐻 ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 20 |
9 14 19
|
3eqtr4g |
⊢ ( 𝜑 → ( -g ‘ 𝐺 ) = ( -g ‘ 𝐻 ) ) |