| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngngp2.t |
|- T = ( G toNrmGrp N ) |
| 2 |
|
tngngp2.x |
|- X = ( Base ` G ) |
| 3 |
|
tngngp2.d |
|- D = ( dist ` T ) |
| 4 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
| 5 |
2
|
fvexi |
|- X e. _V |
| 6 |
|
reex |
|- RR e. _V |
| 7 |
|
fex2 |
|- ( ( N : X --> RR /\ X e. _V /\ RR e. _V ) -> N e. _V ) |
| 8 |
5 6 7
|
mp3an23 |
|- ( N : X --> RR -> N e. _V ) |
| 9 |
2
|
a1i |
|- ( N e. _V -> X = ( Base ` G ) ) |
| 10 |
1 2
|
tngbas |
|- ( N e. _V -> X = ( Base ` T ) ) |
| 11 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 12 |
1 11
|
tngplusg |
|- ( N e. _V -> ( +g ` G ) = ( +g ` T ) ) |
| 13 |
12
|
oveqdr |
|- ( ( N e. _V /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` T ) y ) ) |
| 14 |
9 10 13
|
grppropd |
|- ( N e. _V -> ( G e. Grp <-> T e. Grp ) ) |
| 15 |
8 14
|
syl |
|- ( N : X --> RR -> ( G e. Grp <-> T e. Grp ) ) |
| 16 |
4 15
|
imbitrrid |
|- ( N : X --> RR -> ( T e. NrmGrp -> G e. Grp ) ) |
| 17 |
16
|
imp |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> G e. Grp ) |
| 18 |
|
ngpms |
|- ( T e. NrmGrp -> T e. MetSp ) |
| 19 |
18
|
adantl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> T e. MetSp ) |
| 20 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 21 |
20 3
|
msmet2 |
|- ( T e. MetSp -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
| 22 |
19 21
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
| 23 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 24 |
2 23
|
grpsubf |
|- ( G e. Grp -> ( -g ` G ) : ( X X. X ) --> X ) |
| 25 |
17 24
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( -g ` G ) : ( X X. X ) --> X ) |
| 26 |
|
fco |
|- ( ( N : X --> RR /\ ( -g ` G ) : ( X X. X ) --> X ) -> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) |
| 27 |
25 26
|
syldan |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) |
| 28 |
8
|
adantr |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> N e. _V ) |
| 29 |
1 23
|
tngds |
|- ( N e. _V -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 30 |
28 29
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 31 |
3 30
|
eqtr4id |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D = ( N o. ( -g ` G ) ) ) |
| 32 |
31
|
feq1d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D : ( X X. X ) --> RR <-> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) ) |
| 33 |
27 32
|
mpbird |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D : ( X X. X ) --> RR ) |
| 34 |
|
ffn |
|- ( D : ( X X. X ) --> RR -> D Fn ( X X. X ) ) |
| 35 |
|
fnresdm |
|- ( D Fn ( X X. X ) -> ( D |` ( X X. X ) ) = D ) |
| 36 |
33 34 35
|
3syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( X X. X ) ) = D ) |
| 37 |
28 10
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> X = ( Base ` T ) ) |
| 38 |
37
|
sqxpeqd |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( X X. X ) = ( ( Base ` T ) X. ( Base ` T ) ) ) |
| 39 |
38
|
reseq2d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( X X. X ) ) = ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
| 40 |
36 39
|
eqtr3d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D = ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
| 41 |
37
|
fveq2d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( Met ` X ) = ( Met ` ( Base ` T ) ) ) |
| 42 |
22 40 41
|
3eltr4d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D e. ( Met ` X ) ) |
| 43 |
17 42
|
jca |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( G e. Grp /\ D e. ( Met ` X ) ) ) |
| 44 |
15
|
biimpa |
|- ( ( N : X --> RR /\ G e. Grp ) -> T e. Grp ) |
| 45 |
44
|
adantrr |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. Grp ) |
| 46 |
|
simprr |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> D e. ( Met ` X ) ) |
| 47 |
8
|
adantr |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N e. _V ) |
| 48 |
47 10
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> X = ( Base ` T ) ) |
| 49 |
48
|
fveq2d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( Met ` X ) = ( Met ` ( Base ` T ) ) ) |
| 50 |
46 49
|
eleqtrd |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> D e. ( Met ` ( Base ` T ) ) ) |
| 51 |
|
metf |
|- ( D e. ( Met ` ( Base ` T ) ) -> D : ( ( Base ` T ) X. ( Base ` T ) ) --> RR ) |
| 52 |
|
ffn |
|- ( D : ( ( Base ` T ) X. ( Base ` T ) ) --> RR -> D Fn ( ( Base ` T ) X. ( Base ` T ) ) ) |
| 53 |
|
fnresdm |
|- ( D Fn ( ( Base ` T ) X. ( Base ` T ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = D ) |
| 54 |
50 51 52 53
|
4syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = D ) |
| 55 |
54 50
|
eqeltrd |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
| 56 |
54
|
fveq2d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) = ( MetOpen ` D ) ) |
| 57 |
|
simprl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> G e. Grp ) |
| 58 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
| 59 |
1 3 58
|
tngtopn |
|- ( ( G e. Grp /\ N e. _V ) -> ( MetOpen ` D ) = ( TopOpen ` T ) ) |
| 60 |
57 47 59
|
syl2anc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( MetOpen ` D ) = ( TopOpen ` T ) ) |
| 61 |
56 60
|
eqtr2d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( TopOpen ` T ) = ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
| 62 |
|
eqid |
|- ( TopOpen ` T ) = ( TopOpen ` T ) |
| 63 |
3
|
reseq1i |
|- ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) |
| 64 |
62 20 63
|
isms2 |
|- ( T e. MetSp <-> ( ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) /\ ( TopOpen ` T ) = ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) ) |
| 65 |
55 61 64
|
sylanbrc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. MetSp ) |
| 66 |
|
simpl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N : X --> RR ) |
| 67 |
1 2 6
|
tngnm |
|- ( ( G e. Grp /\ N : X --> RR ) -> N = ( norm ` T ) ) |
| 68 |
57 66 67
|
syl2anc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N = ( norm ` T ) ) |
| 69 |
9 10
|
eqtr3d |
|- ( N e. _V -> ( Base ` G ) = ( Base ` T ) ) |
| 70 |
69 12
|
grpsubpropd |
|- ( N e. _V -> ( -g ` G ) = ( -g ` T ) ) |
| 71 |
47 70
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( -g ` G ) = ( -g ` T ) ) |
| 72 |
68 71
|
coeq12d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( N o. ( -g ` G ) ) = ( ( norm ` T ) o. ( -g ` T ) ) ) |
| 73 |
47 29
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 74 |
72 73
|
eqtr3d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( ( norm ` T ) o. ( -g ` T ) ) = ( dist ` T ) ) |
| 75 |
|
eqimss |
|- ( ( ( norm ` T ) o. ( -g ` T ) ) = ( dist ` T ) -> ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) |
| 76 |
74 75
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) |
| 77 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
| 78 |
|
eqid |
|- ( -g ` T ) = ( -g ` T ) |
| 79 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
| 80 |
77 78 79
|
isngp |
|- ( T e. NrmGrp <-> ( T e. Grp /\ T e. MetSp /\ ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) ) |
| 81 |
45 65 76 80
|
syl3anbrc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. NrmGrp ) |
| 82 |
43 81
|
impbida |
|- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ D e. ( Met ` X ) ) ) ) |