Metamath Proof Explorer


Theorem tngtopn

Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
tngtset.2 𝐷 = ( dist ‘ 𝑇 )
tngtset.3 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion tngtopn ( ( 𝐺𝑉𝑁𝑊 ) → 𝐽 = ( TopOpen ‘ 𝑇 ) )

Proof

Step Hyp Ref Expression
1 tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
2 tngtset.2 𝐷 = ( dist ‘ 𝑇 )
3 tngtset.3 𝐽 = ( MetOpen ‘ 𝐷 )
4 1 2 3 tngtset ( ( 𝐺𝑉𝑁𝑊 ) → 𝐽 = ( TopSet ‘ 𝑇 ) )
5 df-mopn MetOpen = ( 𝑥 ran ∞Met ↦ ( topGen ‘ ran ( ball ‘ 𝑥 ) ) )
6 5 dmmptss dom MetOpen ⊆ ran ∞Met
7 6 sseli ( 𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met )
8 eqid ( -g𝐺 ) = ( -g𝐺 )
9 1 8 tngds ( 𝑁𝑊 → ( 𝑁 ∘ ( -g𝐺 ) ) = ( dist ‘ 𝑇 ) )
10 9 2 eqtr4di ( 𝑁𝑊 → ( 𝑁 ∘ ( -g𝐺 ) ) = 𝐷 )
11 10 adantl ( ( 𝐺𝑉𝑁𝑊 ) → ( 𝑁 ∘ ( -g𝐺 ) ) = 𝐷 )
12 11 dmeqd ( ( 𝐺𝑉𝑁𝑊 ) → dom ( 𝑁 ∘ ( -g𝐺 ) ) = dom 𝐷 )
13 dmcoss dom ( 𝑁 ∘ ( -g𝐺 ) ) ⊆ dom ( -g𝐺 )
14 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
15 eqid ( +g𝐺 ) = ( +g𝐺 )
16 eqid ( invg𝐺 ) = ( invg𝐺 )
17 14 15 16 8 grpsubfval ( -g𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) )
18 ovex ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ∈ V
19 17 18 dmmpo dom ( -g𝐺 ) = ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) )
20 13 19 sseqtri dom ( 𝑁 ∘ ( -g𝐺 ) ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) )
21 12 20 eqsstrrdi ( ( 𝐺𝑉𝑁𝑊 ) → dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
22 21 adantr ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
23 dmss ( dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → dom dom 𝐷 ⊆ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
24 22 23 syl ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → dom dom 𝐷 ⊆ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
25 dmxpid dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐺 )
26 24 25 sseqtrdi ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → dom dom 𝐷 ⊆ ( Base ‘ 𝐺 ) )
27 simpr ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → 𝐷 ran ∞Met )
28 xmetunirn ( 𝐷 ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) )
29 27 28 sylib ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) )
30 eqid ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 )
31 30 mopnuni ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → dom dom 𝐷 = ( MetOpen ‘ 𝐷 ) )
32 29 31 syl ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → dom dom 𝐷 = ( MetOpen ‘ 𝐷 ) )
33 1 14 tngbas ( 𝑁𝑊 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) )
34 33 ad2antlr ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) )
35 26 32 34 3sstr3d ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → ( MetOpen ‘ 𝐷 ) ⊆ ( Base ‘ 𝑇 ) )
36 sspwuni ( ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ↔ ( MetOpen ‘ 𝐷 ) ⊆ ( Base ‘ 𝑇 ) )
37 35 36 sylibr ( ( ( 𝐺𝑉𝑁𝑊 ) ∧ 𝐷 ran ∞Met ) → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) )
38 37 ex ( ( 𝐺𝑉𝑁𝑊 ) → ( 𝐷 ran ∞Met → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) )
39 7 38 syl5 ( ( 𝐺𝑉𝑁𝑊 ) → ( 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) )
40 ndmfv ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) = ∅ )
41 0ss ∅ ⊆ 𝒫 ( Base ‘ 𝑇 )
42 40 41 eqsstrdi ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) )
43 39 42 pm2.61d1 ( ( 𝐺𝑉𝑁𝑊 ) → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) )
44 3 43 eqsstrid ( ( 𝐺𝑉𝑁𝑊 ) → 𝐽 ⊆ 𝒫 ( Base ‘ 𝑇 ) )
45 4 44 eqsstrrd ( ( 𝐺𝑉𝑁𝑊 ) → ( TopSet ‘ 𝑇 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) )
46 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
47 eqid ( TopSet ‘ 𝑇 ) = ( TopSet ‘ 𝑇 )
48 46 47 topnid ( ( TopSet ‘ 𝑇 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) → ( TopSet ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) )
49 45 48 syl ( ( 𝐺𝑉𝑁𝑊 ) → ( TopSet ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) )
50 4 49 eqtrd ( ( 𝐺𝑉𝑁𝑊 ) → 𝐽 = ( TopOpen ‘ 𝑇 ) )