| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngbas.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
| 2 |
|
tngtset.2 |
⊢ 𝐷 = ( dist ‘ 𝑇 ) |
| 3 |
|
tngtset.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 4 |
1 2 3
|
tngtset |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopSet ‘ 𝑇 ) ) |
| 5 |
|
df-mopn |
⊢ MetOpen = ( 𝑥 ∈ ∪ ran ∞Met ↦ ( topGen ‘ ran ( ball ‘ 𝑥 ) ) ) |
| 6 |
5
|
dmmptss |
⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 7 |
6
|
sseli |
⊢ ( 𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met ) |
| 8 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 9 |
1 8
|
tngds |
⊢ ( 𝑁 ∈ 𝑊 → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 10 |
9 2
|
eqtr4di |
⊢ ( 𝑁 ∈ 𝑊 → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = 𝐷 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = 𝐷 ) |
| 12 |
11
|
dmeqd |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → dom ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = dom 𝐷 ) |
| 13 |
|
dmcoss |
⊢ dom ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⊆ dom ( -g ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 16 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 17 |
14 15 16 8
|
grpsubfval |
⊢ ( -g ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 18 |
|
ovex |
⊢ ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ V |
| 19 |
17 18
|
dmmpo |
⊢ dom ( -g ‘ 𝐺 ) = ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) |
| 20 |
13 19
|
sseqtri |
⊢ dom ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) |
| 21 |
12 20
|
eqsstrrdi |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 23 |
|
dmss |
⊢ ( dom 𝐷 ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → dom dom 𝐷 ⊆ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 ⊆ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 25 |
|
dmxpid |
⊢ dom ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐺 ) |
| 26 |
24 25
|
sseqtrdi |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 28 |
|
xmetunirn |
⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 29 |
27 28
|
sylib |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 30 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 31 |
30
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → dom dom 𝐷 = ∪ ( MetOpen ‘ 𝐷 ) ) |
| 32 |
29 31
|
syl |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 = ∪ ( MetOpen ‘ 𝐷 ) ) |
| 33 |
1 14
|
tngbas |
⊢ ( 𝑁 ∈ 𝑊 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 34 |
33
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 35 |
26 32 34
|
3sstr3d |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → ∪ ( MetOpen ‘ 𝐷 ) ⊆ ( Base ‘ 𝑇 ) ) |
| 36 |
|
sspwuni |
⊢ ( ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ↔ ∪ ( MetOpen ‘ 𝐷 ) ⊆ ( Base ‘ 𝑇 ) ) |
| 37 |
35 36
|
sylibr |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) ∧ 𝐷 ∈ ∪ ran ∞Met ) → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 38 |
37
|
ex |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝐷 ∈ ∪ ran ∞Met → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) ) |
| 39 |
7 38
|
syl5 |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) ) |
| 40 |
|
ndmfv |
⊢ ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) = ∅ ) |
| 41 |
|
0ss |
⊢ ∅ ⊆ 𝒫 ( Base ‘ 𝑇 ) |
| 42 |
40 41
|
eqsstrdi |
⊢ ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 43 |
39 42
|
pm2.61d1 |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 44 |
3 43
|
eqsstrid |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 45 |
4 44
|
eqsstrrd |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( TopSet ‘ 𝑇 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) ) |
| 46 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 47 |
|
eqid |
⊢ ( TopSet ‘ 𝑇 ) = ( TopSet ‘ 𝑇 ) |
| 48 |
46 47
|
topnid |
⊢ ( ( TopSet ‘ 𝑇 ) ⊆ 𝒫 ( Base ‘ 𝑇 ) → ( TopSet ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) ) |
| 49 |
45 48
|
syl |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( TopSet ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) ) |
| 50 |
4 49
|
eqtrd |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopOpen ‘ 𝑇 ) ) |