Metamath Proof Explorer


Definition df-mopn

Description: Define a function whose value is the family of open sets of a metric space. See elmopn for its main property. (Contributed by NM, 1-Sep-2006)

Ref Expression
Assertion df-mopn MetOpen = ( 𝑑 ∈ βˆͺ ran ∞Met ↦ ( topGen β€˜ ran ( ball β€˜ 𝑑 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmopn ⊒ MetOpen
1 vd ⊒ 𝑑
2 cxmet ⊒ ∞Met
3 2 crn ⊒ ran ∞Met
4 3 cuni ⊒ βˆͺ ran ∞Met
5 ctg ⊒ topGen
6 cbl ⊒ ball
7 1 cv ⊒ 𝑑
8 7 6 cfv ⊒ ( ball β€˜ 𝑑 )
9 8 crn ⊒ ran ( ball β€˜ 𝑑 )
10 9 5 cfv ⊒ ( topGen β€˜ ran ( ball β€˜ 𝑑 ) )
11 1 4 10 cmpt ⊒ ( 𝑑 ∈ βˆͺ ran ∞Met ↦ ( topGen β€˜ ran ( ball β€˜ 𝑑 ) ) )
12 0 11 wceq ⊒ MetOpen = ( 𝑑 ∈ βˆͺ ran ∞Met ↦ ( topGen β€˜ ran ( ball β€˜ 𝑑 ) ) )