Metamath Proof Explorer


Definition df-fbas

Description: Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)

Ref Expression
Assertion df-fbas fBas = ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅ ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfbas fBas
1 vw 𝑤
2 cvv V
3 vx 𝑥
4 1 cv 𝑤
5 4 cpw 𝒫 𝑤
6 5 cpw 𝒫 𝒫 𝑤
7 3 cv 𝑥
8 c0
9 7 8 wne 𝑥 ≠ ∅
10 8 7 wnel ∅ ∉ 𝑥
11 vy 𝑦
12 vz 𝑧
13 11 cv 𝑦
14 12 cv 𝑧
15 13 14 cin ( 𝑦𝑧 )
16 15 cpw 𝒫 ( 𝑦𝑧 )
17 7 16 cin ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) )
18 17 8 wne ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅
19 18 12 7 wral 𝑧𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅
20 19 11 7 wral 𝑦𝑥𝑧𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅
21 9 10 20 w3a ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅ )
22 21 3 6 crab { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅ ) }
23 1 2 22 cmpt ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅ ) } )
24 0 23 wceq fBas = ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) ≠ ∅ ) } )