Metamath Proof Explorer


Theorem tngtopn

Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngtset.2 D = dist T
tngtset.3 J = MetOpen D
Assertion tngtopn G V N W J = TopOpen T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngtset.2 D = dist T
3 tngtset.3 J = MetOpen D
4 1 2 3 tngtset G V N W J = TopSet T
5 df-mopn MetOpen = x ran ∞Met topGen ran ball x
6 5 dmmptss dom MetOpen ran ∞Met
7 6 sseli D dom MetOpen D ran ∞Met
8 eqid - G = - G
9 1 8 tngds N W N - G = dist T
10 9 2 eqtr4di N W N - G = D
11 10 adantl G V N W N - G = D
12 11 dmeqd G V N W dom N - G = dom D
13 dmcoss dom N - G dom - G
14 eqid Base G = Base G
15 eqid + G = + G
16 eqid inv g G = inv g G
17 14 15 16 8 grpsubfval - G = x Base G , y Base G x + G inv g G y
18 ovex x + G inv g G y V
19 17 18 dmmpo dom - G = Base G × Base G
20 13 19 sseqtri dom N - G Base G × Base G
21 12 20 eqsstrrdi G V N W dom D Base G × Base G
22 21 adantr G V N W D ran ∞Met dom D Base G × Base G
23 dmss dom D Base G × Base G dom dom D dom Base G × Base G
24 22 23 syl G V N W D ran ∞Met dom dom D dom Base G × Base G
25 dmxpid dom Base G × Base G = Base G
26 24 25 sseqtrdi G V N W D ran ∞Met dom dom D Base G
27 simpr G V N W D ran ∞Met D ran ∞Met
28 xmetunirn D ran ∞Met D ∞Met dom dom D
29 27 28 sylib G V N W D ran ∞Met D ∞Met dom dom D
30 eqid MetOpen D = MetOpen D
31 30 mopnuni D ∞Met dom dom D dom dom D = MetOpen D
32 29 31 syl G V N W D ran ∞Met dom dom D = MetOpen D
33 1 14 tngbas N W Base G = Base T
34 33 ad2antlr G V N W D ran ∞Met Base G = Base T
35 26 32 34 3sstr3d G V N W D ran ∞Met MetOpen D Base T
36 sspwuni MetOpen D 𝒫 Base T MetOpen D Base T
37 35 36 sylibr G V N W D ran ∞Met MetOpen D 𝒫 Base T
38 37 ex G V N W D ran ∞Met MetOpen D 𝒫 Base T
39 7 38 syl5 G V N W D dom MetOpen MetOpen D 𝒫 Base T
40 ndmfv ¬ D dom MetOpen MetOpen D =
41 0ss 𝒫 Base T
42 40 41 eqsstrdi ¬ D dom MetOpen MetOpen D 𝒫 Base T
43 39 42 pm2.61d1 G V N W MetOpen D 𝒫 Base T
44 3 43 eqsstrid G V N W J 𝒫 Base T
45 4 44 eqsstrrd G V N W TopSet T 𝒫 Base T
46 eqid Base T = Base T
47 eqid TopSet T = TopSet T
48 46 47 topnid TopSet T 𝒫 Base T TopSet T = TopOpen T
49 45 48 syl G V N W TopSet T = TopOpen T
50 4 49 eqtrd G V N W J = TopOpen T