Metamath Proof Explorer


Theorem xmetunirn

Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion xmetunirn D ran ∞Met D ∞Met dom dom D

Proof

Step Hyp Ref Expression
1 ovex * x × x V
2 1 rabex d * x × x | y x z x y d z = 0 y = z w x y d z w d y + 𝑒 w d z V
3 df-xmet ∞Met = x V d * x × x | y x z x y d z = 0 y = z w x y d z w d y + 𝑒 w d z
4 2 3 fnmpti ∞Met Fn V
5 fnunirn ∞Met Fn V D ran ∞Met x V D ∞Met x
6 4 5 ax-mp D ran ∞Met x V D ∞Met x
7 id D ∞Met x D ∞Met x
8 xmetdmdm D ∞Met x x = dom dom D
9 8 fveq2d D ∞Met x ∞Met x = ∞Met dom dom D
10 7 9 eleqtrd D ∞Met x D ∞Met dom dom D
11 10 rexlimivw x V D ∞Met x D ∞Met dom dom D
12 6 11 sylbi D ran ∞Met D ∞Met dom dom D
13 fvssunirn ∞Met dom dom D ran ∞Met
14 13 sseli D ∞Met dom dom D D ran ∞Met
15 12 14 impbii D ran ∞Met D ∞Met dom dom D