Metamath Proof Explorer


Theorem xmetdmdm

Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xmetdmdm D∞MetXX=domdomD

Proof

Step Hyp Ref Expression
1 xmetf D∞MetXD:X×X*
2 1 fdmd D∞MetXdomD=X×X
3 2 dmeqd D∞MetXdomdomD=domX×X
4 dmxpid domX×X=X
5 3 4 eqtr2di D∞MetXX=domdomD