Metamath Proof Explorer


Theorem metdmdm

Description: Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion metdmdm DMetXX=domdomD

Proof

Step Hyp Ref Expression
1 metxmet DMetXD∞MetX
2 xmetdmdm D∞MetXX=domdomD
3 1 2 syl DMetXX=domdomD