Step |
Hyp |
Ref |
Expression |
1 |
|
tngbas.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tngtset.2 |
⊢ 𝐷 = ( dist ‘ 𝑇 ) |
3 |
|
tngtset.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
4 |
|
ovex |
⊢ ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⟩ ) ∈ V |
5 |
|
fvex |
⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ∈ V |
6 |
|
tsetid |
⊢ TopSet = Slot ( TopSet ‘ ndx ) |
7 |
6
|
setsid |
⊢ ( ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⟩ ) ∈ V ∧ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ∈ V ) → ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ⟩ ) ) ) |
8 |
4 5 7
|
mp2an |
⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ⟩ ) ) |
9 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
10 |
1 9
|
tngds |
⊢ ( 𝑁 ∈ 𝑊 → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
11 |
2 10
|
eqtr4id |
⊢ ( 𝑁 ∈ 𝑊 → 𝐷 = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐷 = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ) |
14 |
3 13
|
eqtrid |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ) |
15 |
|
eqid |
⊢ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) |
16 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
17 |
1 9 15 16
|
tngval |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝑇 = ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ⟩ ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( TopSet ‘ 𝑇 ) = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) ⟩ ) ) ) |
19 |
8 14 18
|
3eqtr4a |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → 𝐽 = ( TopSet ‘ 𝑇 ) ) |