Metamath Proof Explorer


Theorem abvmet

Description: An absolute value F generates a metric defined by d ( x , y ) = F ( x - y ) , analogously to cnmet . (In fact, the ring structure is not needed at all; the group properties abveq0 and abvtri , abvneg are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses abvmet.x 𝑋 = ( Base ‘ 𝑅 )
abvmet.a 𝐴 = ( AbsVal ‘ 𝑅 )
abvmet.m = ( -g𝑅 )
Assertion abvmet ( 𝐹𝐴 → ( 𝐹 ) ∈ ( Met ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 abvmet.x 𝑋 = ( Base ‘ 𝑅 )
2 abvmet.a 𝐴 = ( AbsVal ‘ 𝑅 )
3 abvmet.m = ( -g𝑅 )
4 eqid ( 0g𝑅 ) = ( 0g𝑅 )
5 2 abvrcl ( 𝐹𝐴𝑅 ∈ Ring )
6 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
7 5 6 syl ( 𝐹𝐴𝑅 ∈ Grp )
8 2 1 abvf ( 𝐹𝐴𝐹 : 𝑋 ⟶ ℝ )
9 2 1 4 abveq0 ( ( 𝐹𝐴𝑥𝑋 ) → ( ( 𝐹𝑥 ) = 0 ↔ 𝑥 = ( 0g𝑅 ) ) )
10 2 1 3 abvsubtri ( ( 𝐹𝐴𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 𝑦 ) ) ≤ ( ( 𝐹𝑥 ) + ( 𝐹𝑦 ) ) )
11 10 3expb ( ( 𝐹𝐴 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 𝑦 ) ) ≤ ( ( 𝐹𝑥 ) + ( 𝐹𝑦 ) ) )
12 1 3 4 7 8 9 11 nrmmetd ( 𝐹𝐴 → ( 𝐹 ) ∈ ( Met ‘ 𝑋 ) )