Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnrg.1 | |- N = ( norm ` R ) |
|
isnrg.2 | |- A = ( AbsVal ` R ) |
||
Assertion | isnrg | |- ( R e. NrmRing <-> ( R e. NrmGrp /\ N e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrg.1 | |- N = ( norm ` R ) |
|
2 | isnrg.2 | |- A = ( AbsVal ` R ) |
|
3 | fveq2 | |- ( r = R -> ( norm ` r ) = ( norm ` R ) ) |
|
4 | 3 1 | eqtr4di | |- ( r = R -> ( norm ` r ) = N ) |
5 | fveq2 | |- ( r = R -> ( AbsVal ` r ) = ( AbsVal ` R ) ) |
|
6 | 5 2 | eqtr4di | |- ( r = R -> ( AbsVal ` r ) = A ) |
7 | 4 6 | eleq12d | |- ( r = R -> ( ( norm ` r ) e. ( AbsVal ` r ) <-> N e. A ) ) |
8 | df-nrg | |- NrmRing = { r e. NrmGrp | ( norm ` r ) e. ( AbsVal ` r ) } |
|
9 | 7 8 | elrab2 | |- ( R e. NrmRing <-> ( R e. NrmGrp /\ N e. A ) ) |