Metamath Proof Explorer


Theorem isnrg

Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses isnrg.1 N=normR
isnrg.2 A=AbsValR
Assertion isnrg RNrmRingRNrmGrpNA

Proof

Step Hyp Ref Expression
1 isnrg.1 N=normR
2 isnrg.2 A=AbsValR
3 fveq2 r=Rnormr=normR
4 3 1 eqtr4di r=Rnormr=N
5 fveq2 r=RAbsValr=AbsValR
6 5 2 eqtr4di r=RAbsValr=A
7 4 6 eleq12d r=RnormrAbsValrNA
8 df-nrg NrmRing=rNrmGrp|normrAbsValr
9 7 8 elrab2 RNrmRingRNrmGrpNA