Description: A normed ring is a ring with an induced topology and metric such that the metric is translation-invariant and the norm (distance from 0) is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nrg | |- NrmRing = { w e. NrmGrp | ( norm ` w ) e. ( AbsVal ` w ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnrg | |- NrmRing |
|
| 1 | vw | |- w |
|
| 2 | cngp | |- NrmGrp |
|
| 3 | cnm | |- norm |
|
| 4 | 1 | cv | |- w |
| 5 | 4 3 | cfv | |- ( norm ` w ) |
| 6 | cabv | |- AbsVal |
|
| 7 | 4 6 | cfv | |- ( AbsVal ` w ) |
| 8 | 5 7 | wcel | |- ( norm ` w ) e. ( AbsVal ` w ) |
| 9 | 8 1 2 | crab | |- { w e. NrmGrp | ( norm ` w ) e. ( AbsVal ` w ) } |
| 10 | 0 9 | wceq | |- NrmRing = { w e. NrmGrp | ( norm ` w ) e. ( AbsVal ` w ) } |