Metamath Proof Explorer


Theorem subrgnrg

Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis subrgnrg.h H=G𝑠A
Assertion subrgnrg GNrmRingASubRingGHNrmRing

Proof

Step Hyp Ref Expression
1 subrgnrg.h H=G𝑠A
2 nrgngp GNrmRingGNrmGrp
3 subrgsubg ASubRingGASubGrpG
4 1 subgngp GNrmGrpASubGrpGHNrmGrp
5 2 3 4 syl2an GNrmRingASubRingGHNrmGrp
6 3 adantl GNrmRingASubRingGASubGrpG
7 eqid normG=normG
8 eqid normH=normH
9 1 7 8 subgnm ASubGrpGnormH=normGA
10 6 9 syl GNrmRingASubRingGnormH=normGA
11 eqid AbsValG=AbsValG
12 7 11 nrgabv GNrmRingnormGAbsValG
13 eqid AbsValH=AbsValH
14 11 1 13 abvres normGAbsValGASubRingGnormGAAbsValH
15 12 14 sylan GNrmRingASubRingGnormGAAbsValH
16 10 15 eqeltrd GNrmRingASubRingGnormHAbsValH
17 8 13 isnrg HNrmRingHNrmGrpnormHAbsValH
18 5 16 17 sylanbrc GNrmRingASubRingGHNrmRing