| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
| 2 |
|
tcphcph.v |
|- V = ( Base ` W ) |
| 3 |
|
tcphcph.f |
|- F = ( Scalar ` W ) |
| 4 |
|
tcphcph.1 |
|- ( ph -> W e. PreHil ) |
| 5 |
|
tcphcph.2 |
|- ( ph -> F = ( CCfld |`s K ) ) |
| 6 |
|
tcphcph.h |
|- ., = ( .i ` W ) |
| 7 |
1 2 3 4 5
|
phclm |
|- ( ph -> W e. CMod ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ X e. V ) -> W e. CMod ) |
| 9 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 10 |
3 9
|
clmsscn |
|- ( W e. CMod -> ( Base ` F ) C_ CC ) |
| 11 |
8 10
|
syl |
|- ( ( ph /\ X e. V ) -> ( Base ` F ) C_ CC ) |
| 12 |
3 6 2 9
|
ipcl |
|- ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) |
| 13 |
12
|
3anidm23 |
|- ( ( W e. PreHil /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) |
| 14 |
4 13
|
sylan |
|- ( ( ph /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) |
| 15 |
11 14
|
sseldd |
|- ( ( ph /\ X e. V ) -> ( X ., X ) e. CC ) |
| 16 |
3
|
clmcj |
|- ( W e. CMod -> * = ( *r ` F ) ) |
| 17 |
8 16
|
syl |
|- ( ( ph /\ X e. V ) -> * = ( *r ` F ) ) |
| 18 |
17
|
fveq1d |
|- ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( ( *r ` F ) ` ( X ., X ) ) ) |
| 19 |
4
|
adantr |
|- ( ( ph /\ X e. V ) -> W e. PreHil ) |
| 20 |
|
simpr |
|- ( ( ph /\ X e. V ) -> X e. V ) |
| 21 |
|
eqid |
|- ( *r ` F ) = ( *r ` F ) |
| 22 |
3 6 2 21
|
ipcj |
|- ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) ) |
| 23 |
19 20 20 22
|
syl3anc |
|- ( ( ph /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) ) |
| 24 |
18 23
|
eqtrd |
|- ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( X ., X ) ) |
| 25 |
15 24
|
cjrebd |
|- ( ( ph /\ X e. V ) -> ( X ., X ) e. RR ) |