| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
| 2 |
|
tcphcph.v |
|- V = ( Base ` W ) |
| 3 |
|
tcphcph.f |
|- F = ( Scalar ` W ) |
| 4 |
|
tcphcph.1 |
|- ( ph -> W e. PreHil ) |
| 5 |
|
tcphcph.2 |
|- ( ph -> F = ( CCfld |`s K ) ) |
| 6 |
|
tcphcph.h |
|- ., = ( .i ` W ) |
| 7 |
|
tcphcph.3 |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
| 8 |
|
tcphcph.4 |
|- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 9 |
|
tcphcph.k |
|- K = ( Base ` F ) |
| 10 |
|
ipcau2.n |
|- N = ( norm ` G ) |
| 11 |
|
ipcau2.c |
|- C = ( ( Y ., X ) / ( Y ., Y ) ) |
| 12 |
|
ipcau2.3 |
|- ( ph -> X e. V ) |
| 13 |
|
ipcau2.4 |
|- ( ph -> Y e. V ) |
| 14 |
|
oveq2 |
|- ( Y = ( 0g ` W ) -> ( X ., Y ) = ( X ., ( 0g ` W ) ) ) |
| 15 |
14
|
oveq1d |
|- ( Y = ( 0g ` W ) -> ( ( X ., Y ) x. ( Y ., X ) ) = ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) ) |
| 16 |
15
|
breq1d |
|- ( Y = ( 0g ` W ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) <-> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) ) |
| 17 |
1 2 3 4 5
|
phclm |
|- ( ph -> W e. CMod ) |
| 18 |
3 9
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
| 19 |
17 18
|
syl |
|- ( ph -> K C_ CC ) |
| 20 |
3 6 2 9
|
ipcl |
|- ( ( W e. PreHil /\ X e. V /\ Y e. V ) -> ( X ., Y ) e. K ) |
| 21 |
4 12 13 20
|
syl3anc |
|- ( ph -> ( X ., Y ) e. K ) |
| 22 |
19 21
|
sseldd |
|- ( ph -> ( X ., Y ) e. CC ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., Y ) e. CC ) |
| 24 |
3 6 2 9
|
ipcl |
|- ( ( W e. PreHil /\ Y e. V /\ X e. V ) -> ( Y ., X ) e. K ) |
| 25 |
4 13 12 24
|
syl3anc |
|- ( ph -> ( Y ., X ) e. K ) |
| 26 |
19 25
|
sseldd |
|- ( ph -> ( Y ., X ) e. CC ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., X ) e. CC ) |
| 28 |
1 2 3 4 5 6
|
tcphcphlem3 |
|- ( ( ph /\ Y e. V ) -> ( Y ., Y ) e. RR ) |
| 29 |
13 28
|
mpdan |
|- ( ph -> ( Y ., Y ) e. RR ) |
| 30 |
29
|
recnd |
|- ( ph -> ( Y ., Y ) e. CC ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) e. CC ) |
| 32 |
3
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` F ) ) |
| 33 |
17 32
|
syl |
|- ( ph -> 0 = ( 0g ` F ) ) |
| 34 |
33
|
eqeq2d |
|- ( ph -> ( ( Y ., Y ) = 0 <-> ( Y ., Y ) = ( 0g ` F ) ) ) |
| 35 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 36 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 37 |
3 6 2 35 36
|
ipeq0 |
|- ( ( W e. PreHil /\ Y e. V ) -> ( ( Y ., Y ) = ( 0g ` F ) <-> Y = ( 0g ` W ) ) ) |
| 38 |
4 13 37
|
syl2anc |
|- ( ph -> ( ( Y ., Y ) = ( 0g ` F ) <-> Y = ( 0g ` W ) ) ) |
| 39 |
34 38
|
bitrd |
|- ( ph -> ( ( Y ., Y ) = 0 <-> Y = ( 0g ` W ) ) ) |
| 40 |
39
|
necon3bid |
|- ( ph -> ( ( Y ., Y ) =/= 0 <-> Y =/= ( 0g ` W ) ) ) |
| 41 |
40
|
biimpar |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) =/= 0 ) |
| 42 |
23 27 31 41
|
divassd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) = ( ( X ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) ) |
| 43 |
11
|
oveq2i |
|- ( ( X ., Y ) x. C ) = ( ( X ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) |
| 44 |
42 43
|
eqtr4di |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) = ( ( X ., Y ) x. C ) ) |
| 45 |
|
oveq12 |
|- ( ( x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) /\ x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) -> ( x ., x ) = ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 46 |
45
|
anidms |
|- ( x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) -> ( x ., x ) = ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 47 |
46
|
breq2d |
|- ( x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) -> ( 0 <_ ( x ., x ) <-> 0 <_ ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) ) |
| 48 |
8
|
ralrimiva |
|- ( ph -> A. x e. V 0 <_ ( x ., x ) ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> A. x e. V 0 <_ ( x ., x ) ) |
| 50 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
| 51 |
4 50
|
syl |
|- ( ph -> W e. LMod ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> W e. LMod ) |
| 53 |
12
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> X e. V ) |
| 54 |
11
|
fveq2i |
|- ( * ` C ) = ( * ` ( ( Y ., X ) / ( Y ., Y ) ) ) |
| 55 |
27 31 41
|
cjdivd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( ( Y ., X ) / ( Y ., Y ) ) ) = ( ( * ` ( Y ., X ) ) / ( * ` ( Y ., Y ) ) ) ) |
| 56 |
54 55
|
eqtrid |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) = ( ( * ` ( Y ., X ) ) / ( * ` ( Y ., Y ) ) ) ) |
| 57 |
5
|
fveq2d |
|- ( ph -> ( *r ` F ) = ( *r ` ( CCfld |`s K ) ) ) |
| 58 |
9
|
fvexi |
|- K e. _V |
| 59 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
| 60 |
|
cnfldcj |
|- * = ( *r ` CCfld ) |
| 61 |
59 60
|
ressstarv |
|- ( K e. _V -> * = ( *r ` ( CCfld |`s K ) ) ) |
| 62 |
58 61
|
ax-mp |
|- * = ( *r ` ( CCfld |`s K ) ) |
| 63 |
57 62
|
eqtr4di |
|- ( ph -> ( *r ` F ) = * ) |
| 64 |
63
|
fveq1d |
|- ( ph -> ( ( *r ` F ) ` ( X ., Y ) ) = ( * ` ( X ., Y ) ) ) |
| 65 |
|
eqid |
|- ( *r ` F ) = ( *r ` F ) |
| 66 |
3 6 2 65
|
ipcj |
|- ( ( W e. PreHil /\ X e. V /\ Y e. V ) -> ( ( *r ` F ) ` ( X ., Y ) ) = ( Y ., X ) ) |
| 67 |
4 12 13 66
|
syl3anc |
|- ( ph -> ( ( *r ` F ) ` ( X ., Y ) ) = ( Y ., X ) ) |
| 68 |
64 67
|
eqtr3d |
|- ( ph -> ( * ` ( X ., Y ) ) = ( Y ., X ) ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( X ., Y ) ) = ( Y ., X ) ) |
| 70 |
69
|
fveq2d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( * ` ( X ., Y ) ) ) = ( * ` ( Y ., X ) ) ) |
| 71 |
23
|
cjcjd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( * ` ( X ., Y ) ) ) = ( X ., Y ) ) |
| 72 |
70 71
|
eqtr3d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( Y ., X ) ) = ( X ., Y ) ) |
| 73 |
29
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) e. RR ) |
| 74 |
73
|
cjred |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( Y ., Y ) ) = ( Y ., Y ) ) |
| 75 |
72 74
|
oveq12d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` ( Y ., X ) ) / ( * ` ( Y ., Y ) ) ) = ( ( X ., Y ) / ( Y ., Y ) ) ) |
| 76 |
23 31 41
|
divrecd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) / ( Y ., Y ) ) = ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 77 |
56 75 76
|
3eqtrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) = ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 78 |
17
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> W e. CMod ) |
| 79 |
21
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., Y ) e. K ) |
| 80 |
3 6 2 9
|
ipcl |
|- ( ( W e. PreHil /\ Y e. V /\ Y e. V ) -> ( Y ., Y ) e. K ) |
| 81 |
4 13 13 80
|
syl3anc |
|- ( ph -> ( Y ., Y ) e. K ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) e. K ) |
| 83 |
5
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> F = ( CCfld |`s K ) ) |
| 84 |
|
phllvec |
|- ( W e. PreHil -> W e. LVec ) |
| 85 |
4 84
|
syl |
|- ( ph -> W e. LVec ) |
| 86 |
3
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
| 87 |
85 86
|
syl |
|- ( ph -> F e. DivRing ) |
| 88 |
87
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> F e. DivRing ) |
| 89 |
9 83 88
|
cphreccllem |
|- ( ( ( ph /\ Y =/= ( 0g ` W ) ) /\ ( Y ., Y ) e. K /\ ( Y ., Y ) =/= 0 ) -> ( 1 / ( Y ., Y ) ) e. K ) |
| 90 |
82 41 89
|
mpd3an23 |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( 1 / ( Y ., Y ) ) e. K ) |
| 91 |
3 9
|
clmmcl |
|- ( ( W e. CMod /\ ( X ., Y ) e. K /\ ( 1 / ( Y ., Y ) ) e. K ) -> ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 92 |
78 79 90 91
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 93 |
77 92
|
eqeltrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) e. K ) |
| 94 |
13
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> Y e. V ) |
| 95 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 96 |
2 3 95 9
|
lmodvscl |
|- ( ( W e. LMod /\ ( * ` C ) e. K /\ Y e. V ) -> ( ( * ` C ) ( .s ` W ) Y ) e. V ) |
| 97 |
52 93 94 96
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) ( .s ` W ) Y ) e. V ) |
| 98 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
| 99 |
2 98
|
lmodvsubcl |
|- ( ( W e. LMod /\ X e. V /\ ( ( * ` C ) ( .s ` W ) Y ) e. V ) -> ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) e. V ) |
| 100 |
52 53 97 99
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) e. V ) |
| 101 |
47 49 100
|
rspcdva |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 <_ ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 102 |
|
eqid |
|- ( -g ` F ) = ( -g ` F ) |
| 103 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 104 |
4
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> W e. PreHil ) |
| 105 |
3 6 2 98 102 103 104 53 97 53 97
|
ip2subdi |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( ( X ., X ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ( -g ` F ) ( ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) ) ) ) |
| 106 |
83
|
fveq2d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( +g ` F ) = ( +g ` ( CCfld |`s K ) ) ) |
| 107 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 108 |
59 107
|
ressplusg |
|- ( K e. _V -> + = ( +g ` ( CCfld |`s K ) ) ) |
| 109 |
58 108
|
ax-mp |
|- + = ( +g ` ( CCfld |`s K ) ) |
| 110 |
106 109
|
eqtr4di |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( +g ` F ) = + ) |
| 111 |
|
eqidd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) = ( X ., X ) ) |
| 112 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 113 |
3 6 2 9 95 112
|
ipass |
|- ( ( W e. PreHil /\ ( ( * ` C ) e. K /\ Y e. V /\ ( ( * ` C ) ( .s ` W ) Y ) e. V ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( * ` C ) ( .r ` F ) ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 114 |
104 93 94 97 113
|
syl13anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( * ` C ) ( .r ` F ) ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 115 |
83
|
fveq2d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( .r ` F ) = ( .r ` ( CCfld |`s K ) ) ) |
| 116 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 117 |
59 116
|
ressmulr |
|- ( K e. _V -> x. = ( .r ` ( CCfld |`s K ) ) ) |
| 118 |
58 117
|
ax-mp |
|- x. = ( .r ` ( CCfld |`s K ) ) |
| 119 |
115 118
|
eqtr4di |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( .r ` F ) = x. ) |
| 120 |
|
eqidd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) = ( * ` C ) ) |
| 121 |
27 31 41
|
divrecd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., X ) / ( Y ., Y ) ) = ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 122 |
11 121
|
eqtrid |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> C = ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 123 |
25
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., X ) e. K ) |
| 124 |
3 9
|
clmmcl |
|- ( ( W e. CMod /\ ( Y ., X ) e. K /\ ( 1 / ( Y ., Y ) ) e. K ) -> ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 125 |
78 123 90 124
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 126 |
122 125
|
eqeltrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> C e. K ) |
| 127 |
3 6 2 9 95 112 65
|
ipassr2 |
|- ( ( W e. PreHil /\ ( Y e. V /\ Y e. V /\ C e. K ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( Y ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 128 |
104 94 94 126 127
|
syl13anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( Y ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 129 |
119
|
oveqd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( ( Y ., Y ) x. C ) ) |
| 130 |
11
|
oveq2i |
|- ( ( Y ., Y ) x. C ) = ( ( Y ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) |
| 131 |
27 31 41
|
divcan2d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) = ( Y ., X ) ) |
| 132 |
130 131
|
eqtrid |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) x. C ) = ( Y ., X ) ) |
| 133 |
129 132
|
eqtrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( Y ., X ) ) |
| 134 |
63
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( *r ` F ) = * ) |
| 135 |
134
|
fveq1d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( *r ` F ) ` C ) = ( * ` C ) ) |
| 136 |
135
|
oveq1d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) = ( ( * ` C ) ( .s ` W ) Y ) ) |
| 137 |
136
|
oveq2d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) = ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) |
| 138 |
128 133 137
|
3eqtr3rd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( Y ., X ) ) |
| 139 |
119 120 138
|
oveq123d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) ( .r ` F ) ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 140 |
114 139
|
eqtrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 141 |
110 111 140
|
oveq123d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., X ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) |
| 142 |
3 6 2 9 95 112 65
|
ipassr2 |
|- ( ( W e. PreHil /\ ( X e. V /\ Y e. V /\ C e. K ) ) -> ( ( X ., Y ) ( .r ` F ) C ) = ( X ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 143 |
104 53 94 126 142
|
syl13anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) ( .r ` F ) C ) = ( X ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 144 |
119
|
oveqd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) ( .r ` F ) C ) = ( ( X ., Y ) x. C ) ) |
| 145 |
136
|
oveq2d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) = ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ) |
| 146 |
143 144 145
|
3eqtr3rd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( X ., Y ) x. C ) ) |
| 147 |
3 6 2 9 95 112
|
ipass |
|- ( ( W e. PreHil /\ ( ( * ` C ) e. K /\ Y e. V /\ X e. V ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) = ( ( * ` C ) ( .r ` F ) ( Y ., X ) ) ) |
| 148 |
104 93 94 53 147
|
syl13anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) = ( ( * ` C ) ( .r ` F ) ( Y ., X ) ) ) |
| 149 |
119
|
oveqd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) ( .r ` F ) ( Y ., X ) ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 150 |
148 149
|
eqtrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 151 |
110 146 150
|
oveq123d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) ) = ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) |
| 152 |
141 151
|
oveq12d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ( -g ` F ) ( ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) ) ) = ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) ) |
| 153 |
3 6 2 9
|
ipcl |
|- ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( X ., X ) e. K ) |
| 154 |
104 53 53 153
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) e. K ) |
| 155 |
3 9
|
clmmcl |
|- ( ( W e. CMod /\ ( * ` C ) e. K /\ ( Y ., X ) e. K ) -> ( ( * ` C ) x. ( Y ., X ) ) e. K ) |
| 156 |
78 93 123 155
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) x. ( Y ., X ) ) e. K ) |
| 157 |
3 9
|
clmacl |
|- ( ( W e. CMod /\ ( X ., X ) e. K /\ ( ( * ` C ) x. ( Y ., X ) ) e. K ) -> ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 158 |
78 154 156 157
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 159 |
3 9
|
clmmcl |
|- ( ( W e. CMod /\ ( X ., Y ) e. K /\ C e. K ) -> ( ( X ., Y ) x. C ) e. K ) |
| 160 |
78 79 126 159
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) e. K ) |
| 161 |
3 9
|
clmacl |
|- ( ( W e. CMod /\ ( ( X ., Y ) x. C ) e. K /\ ( ( * ` C ) x. ( Y ., X ) ) e. K ) -> ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 162 |
78 160 156 161
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 163 |
3 9
|
clmsub |
|- ( ( W e. CMod /\ ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K /\ ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) - ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) ) |
| 164 |
78 158 162 163
|
syl3anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) - ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) ) |
| 165 |
1 2 3 4 5 6
|
tcphcphlem3 |
|- ( ( ph /\ X e. V ) -> ( X ., X ) e. RR ) |
| 166 |
12 165
|
mpdan |
|- ( ph -> ( X ., X ) e. RR ) |
| 167 |
166
|
recnd |
|- ( ph -> ( X ., X ) e. CC ) |
| 168 |
167
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) e. CC ) |
| 169 |
22
|
absvalsqd |
|- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) = ( ( X ., Y ) x. ( * ` ( X ., Y ) ) ) ) |
| 170 |
68
|
oveq2d |
|- ( ph -> ( ( X ., Y ) x. ( * ` ( X ., Y ) ) ) = ( ( X ., Y ) x. ( Y ., X ) ) ) |
| 171 |
169 170
|
eqtrd |
|- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) = ( ( X ., Y ) x. ( Y ., X ) ) ) |
| 172 |
22
|
abscld |
|- ( ph -> ( abs ` ( X ., Y ) ) e. RR ) |
| 173 |
172
|
resqcld |
|- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) e. RR ) |
| 174 |
171 173
|
eqeltrrd |
|- ( ph -> ( ( X ., Y ) x. ( Y ., X ) ) e. RR ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. ( Y ., X ) ) e. RR ) |
| 176 |
175 73 41
|
redivcld |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) e. RR ) |
| 177 |
44 176
|
eqeltrrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) e. RR ) |
| 178 |
177
|
recnd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) e. CC ) |
| 179 |
78 18
|
syl |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> K C_ CC ) |
| 180 |
179 156
|
sseldd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) x. ( Y ., X ) ) e. CC ) |
| 181 |
168 178 180
|
pnpcan2d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) - ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 182 |
164 181
|
eqtr3d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 183 |
105 152 182
|
3eqtrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 184 |
101 183
|
breqtrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 <_ ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 185 |
166
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) e. RR ) |
| 186 |
185 177
|
subge0d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( 0 <_ ( ( X ., X ) - ( ( X ., Y ) x. C ) ) <-> ( ( X ., Y ) x. C ) <_ ( X ., X ) ) ) |
| 187 |
184 186
|
mpbid |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) <_ ( X ., X ) ) |
| 188 |
44 187
|
eqbrtrd |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) <_ ( X ., X ) ) |
| 189 |
|
oveq12 |
|- ( ( x = Y /\ x = Y ) -> ( x ., x ) = ( Y ., Y ) ) |
| 190 |
189
|
anidms |
|- ( x = Y -> ( x ., x ) = ( Y ., Y ) ) |
| 191 |
190
|
breq2d |
|- ( x = Y -> ( 0 <_ ( x ., x ) <-> 0 <_ ( Y ., Y ) ) ) |
| 192 |
191 48 13
|
rspcdva |
|- ( ph -> 0 <_ ( Y ., Y ) ) |
| 193 |
192
|
adantr |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 <_ ( Y ., Y ) ) |
| 194 |
73 193 41
|
ne0gt0d |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 < ( Y ., Y ) ) |
| 195 |
|
ledivmul2 |
|- ( ( ( ( X ., Y ) x. ( Y ., X ) ) e. RR /\ ( X ., X ) e. RR /\ ( ( Y ., Y ) e. RR /\ 0 < ( Y ., Y ) ) ) -> ( ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) <_ ( X ., X ) <-> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) ) |
| 196 |
175 185 73 194 195
|
syl112anc |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) <_ ( X ., X ) <-> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) ) |
| 197 |
188 196
|
mpbid |
|- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 198 |
3 6 2 35 36
|
ip0r |
|- ( ( W e. PreHil /\ X e. V ) -> ( X ., ( 0g ` W ) ) = ( 0g ` F ) ) |
| 199 |
4 12 198
|
syl2anc |
|- ( ph -> ( X ., ( 0g ` W ) ) = ( 0g ` F ) ) |
| 200 |
199 33
|
eqtr4d |
|- ( ph -> ( X ., ( 0g ` W ) ) = 0 ) |
| 201 |
200
|
oveq1d |
|- ( ph -> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) = ( 0 x. ( Y ., X ) ) ) |
| 202 |
26
|
mul02d |
|- ( ph -> ( 0 x. ( Y ., X ) ) = 0 ) |
| 203 |
201 202
|
eqtrd |
|- ( ph -> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) = 0 ) |
| 204 |
|
oveq12 |
|- ( ( x = X /\ x = X ) -> ( x ., x ) = ( X ., X ) ) |
| 205 |
204
|
anidms |
|- ( x = X -> ( x ., x ) = ( X ., X ) ) |
| 206 |
205
|
breq2d |
|- ( x = X -> ( 0 <_ ( x ., x ) <-> 0 <_ ( X ., X ) ) ) |
| 207 |
206 48 12
|
rspcdva |
|- ( ph -> 0 <_ ( X ., X ) ) |
| 208 |
166 29 207 192
|
mulge0d |
|- ( ph -> 0 <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 209 |
203 208
|
eqbrtrd |
|- ( ph -> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 210 |
16 197 209
|
pm2.61ne |
|- ( ph -> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 211 |
166 207
|
resqrtcld |
|- ( ph -> ( sqrt ` ( X ., X ) ) e. RR ) |
| 212 |
211
|
recnd |
|- ( ph -> ( sqrt ` ( X ., X ) ) e. CC ) |
| 213 |
29 192
|
resqrtcld |
|- ( ph -> ( sqrt ` ( Y ., Y ) ) e. RR ) |
| 214 |
213
|
recnd |
|- ( ph -> ( sqrt ` ( Y ., Y ) ) e. CC ) |
| 215 |
212 214
|
sqmuld |
|- ( ph -> ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) = ( ( ( sqrt ` ( X ., X ) ) ^ 2 ) x. ( ( sqrt ` ( Y ., Y ) ) ^ 2 ) ) ) |
| 216 |
167
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( X ., X ) ) ^ 2 ) = ( X ., X ) ) |
| 217 |
30
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( Y ., Y ) ) ^ 2 ) = ( Y ., Y ) ) |
| 218 |
216 217
|
oveq12d |
|- ( ph -> ( ( ( sqrt ` ( X ., X ) ) ^ 2 ) x. ( ( sqrt ` ( Y ., Y ) ) ^ 2 ) ) = ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 219 |
215 218
|
eqtrd |
|- ( ph -> ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) = ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 220 |
210 171 219
|
3brtr4d |
|- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) <_ ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) ) |
| 221 |
211 213
|
remulcld |
|- ( ph -> ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) e. RR ) |
| 222 |
22
|
absge0d |
|- ( ph -> 0 <_ ( abs ` ( X ., Y ) ) ) |
| 223 |
166 207
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( X ., X ) ) ) |
| 224 |
29 192
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( Y ., Y ) ) ) |
| 225 |
211 213 223 224
|
mulge0d |
|- ( ph -> 0 <_ ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 226 |
172 221 222 225
|
le2sqd |
|- ( ph -> ( ( abs ` ( X ., Y ) ) <_ ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) <-> ( ( abs ` ( X ., Y ) ) ^ 2 ) <_ ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) ) ) |
| 227 |
220 226
|
mpbird |
|- ( ph -> ( abs ` ( X ., Y ) ) <_ ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 228 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 229 |
51 228
|
syl |
|- ( ph -> W e. Grp ) |
| 230 |
1 10 2 6
|
tcphnmval |
|- ( ( W e. Grp /\ X e. V ) -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |
| 231 |
229 12 230
|
syl2anc |
|- ( ph -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |
| 232 |
1 10 2 6
|
tcphnmval |
|- ( ( W e. Grp /\ Y e. V ) -> ( N ` Y ) = ( sqrt ` ( Y ., Y ) ) ) |
| 233 |
229 13 232
|
syl2anc |
|- ( ph -> ( N ` Y ) = ( sqrt ` ( Y ., Y ) ) ) |
| 234 |
231 233
|
oveq12d |
|- ( ph -> ( ( N ` X ) x. ( N ` Y ) ) = ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 235 |
227 234
|
breqtrrd |
|- ( ph -> ( abs ` ( X ., Y ) ) <_ ( ( N ` X ) x. ( N ` Y ) ) ) |