| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 3 | 1 2 | clmsubrg |  |-  ( W e. CMod -> ( Base ` F ) e. ( SubRing ` CCfld ) ) | 
						
							| 4 |  | eqid |  |-  ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) | 
						
							| 5 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 6 | 4 5 | subrg0 |  |-  ( ( Base ` F ) e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s ( Base ` F ) ) ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( W e. CMod -> 0 = ( 0g ` ( CCfld |`s ( Base ` F ) ) ) ) | 
						
							| 8 | 1 2 | clmsca |  |-  ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( W e. CMod -> ( 0g ` F ) = ( 0g ` ( CCfld |`s ( Base ` F ) ) ) ) | 
						
							| 10 | 7 9 | eqtr4d |  |-  ( W e. CMod -> 0 = ( 0g ` F ) ) |