Metamath Proof Explorer


Theorem clm0

Description: The zero of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F=ScalarW
Assertion clm0 WCMod0=0F

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 eqid BaseF=BaseF
3 1 2 clmsubrg WCModBaseFSubRingfld
4 eqid fld𝑠BaseF=fld𝑠BaseF
5 cnfld0 0=0fld
6 4 5 subrg0 BaseFSubRingfld0=0fld𝑠BaseF
7 3 6 syl WCMod0=0fld𝑠BaseF
8 1 2 clmsca WCModF=fld𝑠BaseF
9 8 fveq2d WCMod0F=0fld𝑠BaseF
10 7 9 eqtr4d WCMod0=0F