Metamath Proof Explorer


Theorem clm1

Description: The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F=ScalarW
Assertion clm1 WCMod1=1F

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 eqid BaseF=BaseF
3 1 2 clmsubrg WCModBaseFSubRingfld
4 eqid fld𝑠BaseF=fld𝑠BaseF
5 cnfld1 1=1fld
6 4 5 subrg1 BaseFSubRingfld1=1fld𝑠BaseF
7 3 6 syl WCMod1=1fld𝑠BaseF
8 1 2 clmsca WCModF=fld𝑠BaseF
9 8 fveq2d WCMod1F=1fld𝑠BaseF
10 7 9 eqtr4d WCMod1=1F