Metamath Proof Explorer


Theorem clmadd

Description: The addition of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F=ScalarW
Assertion clmadd WCMod+=+F

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 fvex BaseFV
3 eqid fld𝑠BaseF=fld𝑠BaseF
4 cnfldadd +=+fld
5 3 4 ressplusg BaseFV+=+fld𝑠BaseF
6 2 5 ax-mp +=+fld𝑠BaseF
7 eqid BaseF=BaseF
8 1 7 clmsca WCModF=fld𝑠BaseF
9 8 fveq2d WCMod+F=+fld𝑠BaseF
10 6 9 eqtr4id WCMod+=+F