| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | fvex |  |-  ( Base ` F ) e. _V | 
						
							| 3 |  | eqid |  |-  ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) | 
						
							| 4 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 5 | 3 4 | ressplusg |  |-  ( ( Base ` F ) e. _V -> + = ( +g ` ( CCfld |`s ( Base ` F ) ) ) ) | 
						
							| 6 | 2 5 | ax-mp |  |-  + = ( +g ` ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 8 | 1 7 | clmsca |  |-  ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( W e. CMod -> ( +g ` F ) = ( +g ` ( CCfld |`s ( Base ` F ) ) ) ) | 
						
							| 10 | 6 9 | eqtr4id |  |-  ( W e. CMod -> + = ( +g ` F ) ) |