| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 3 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 4 |
|
eqid |
⊢ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) |
| 5 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 6 |
4 5
|
subrg1 |
⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) → 1 = ( 1r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 7 |
3 6
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 8 |
1 2
|
clmsca |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ 𝐹 ) = ( 1r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 10 |
7 9
|
eqtr4d |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |