Metamath Proof Explorer


Theorem cnfld1

Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion cnfld1 1=1fld

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 mullid x1x=x
3 mulrid xx1=x
4 2 3 jca x1x=xx1=x
5 4 rgen x1x=xx1=x
6 1 5 pm3.2i 1x1x=xx1=x
7 cnring fldRing
8 cnfldbas =Basefld
9 cnfldmul ×=fld
10 eqid 1fld=1fld
11 8 9 10 isringid fldRing1x1x=xx1=x1fld=1
12 7 11 ax-mp 1x1x=xx1=x1fld=1
13 6 12 mpbi 1fld=1
14 13 eqcomi 1=1fld