Metamath Proof Explorer


Theorem mulrid

Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mulrid AA1=A

Proof

Step Hyp Ref Expression
1 cnre AxyA=x+iy
2 recn xx
3 ax-icn i
4 recn yy
5 mulcl iyiy
6 3 4 5 sylancr yiy
7 ax-1cn 1
8 adddir xiy1x+iy1=x1+iy1
9 7 8 mp3an3 xiyx+iy1=x1+iy1
10 2 6 9 syl2an xyx+iy1=x1+iy1
11 ax-1rid xx1=x
12 mulass iy1iy1=iy1
13 3 7 12 mp3an13 yiy1=iy1
14 4 13 syl yiy1=iy1
15 ax-1rid yy1=y
16 15 oveq2d yiy1=iy
17 14 16 eqtrd yiy1=iy
18 11 17 oveqan12d xyx1+iy1=x+iy
19 10 18 eqtrd xyx+iy1=x+iy
20 oveq1 A=x+iyA1=x+iy1
21 id A=x+iyA=x+iy
22 20 21 eqeq12d A=x+iyA1=Ax+iy1=x+iy
23 19 22 syl5ibrcom xyA=x+iyA1=A
24 23 rexlimivv xyA=x+iyA1=A
25 1 24 syl AA1=A