| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipcau.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | ipcau.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | ipcau.n |  |-  N = ( norm ` W ) | 
						
							| 4 |  | eqid |  |-  ( toCPreHil ` W ) = ( toCPreHil ` W ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 6 |  | simp1 |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> W e. CPreHil ) | 
						
							| 7 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> W e. PreHil ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 10 | 5 9 | cphsca |  |-  ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 11 | 6 10 | syl |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 12 | 5 9 | cphsqrtcl |  |-  ( ( W e. CPreHil /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 13 | 6 12 | sylan |  |-  ( ( ( W e. CPreHil /\ X e. V /\ Y e. V ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 14 | 1 2 | ipge0 |  |-  ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( x ., x ) ) | 
						
							| 15 | 6 14 | sylan |  |-  ( ( ( W e. CPreHil /\ X e. V /\ Y e. V ) /\ x e. V ) -> 0 <_ ( x ., x ) ) | 
						
							| 16 |  | eqid |  |-  ( norm ` ( toCPreHil ` W ) ) = ( norm ` ( toCPreHil ` W ) ) | 
						
							| 17 |  | eqid |  |-  ( ( Y ., X ) / ( Y ., Y ) ) = ( ( Y ., X ) / ( Y ., Y ) ) | 
						
							| 18 |  | simp2 |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> X e. V ) | 
						
							| 19 |  | simp3 |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> Y e. V ) | 
						
							| 20 | 4 1 5 8 11 2 13 15 9 16 17 18 19 | ipcau2 |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( abs ` ( X ., Y ) ) <_ ( ( ( norm ` ( toCPreHil ` W ) ) ` X ) x. ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) ) | 
						
							| 21 | 4 3 | cphtcphnm |  |-  ( W e. CPreHil -> N = ( norm ` ( toCPreHil ` W ) ) ) | 
						
							| 22 | 6 21 | syl |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> N = ( norm ` ( toCPreHil ` W ) ) ) | 
						
							| 23 | 22 | fveq1d |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( N ` X ) = ( ( norm ` ( toCPreHil ` W ) ) ` X ) ) | 
						
							| 24 | 22 | fveq1d |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( N ` Y ) = ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) | 
						
							| 25 | 23 24 | oveq12d |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( ( N ` X ) x. ( N ` Y ) ) = ( ( ( norm ` ( toCPreHil ` W ) ) ` X ) x. ( ( norm ` ( toCPreHil ` W ) ) ` Y ) ) ) | 
						
							| 26 | 20 25 | breqtrrd |  |-  ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( abs ` ( X ., Y ) ) <_ ( ( N ` X ) x. ( N ` Y ) ) ) |