Metamath Proof Explorer


Theorem ipcau

Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of Kreyszig p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses ipcau.v V=BaseW
ipcau.h ,˙=𝑖W
ipcau.n N=normW
Assertion ipcau WCPreHilXVYVX,˙YNXNY

Proof

Step Hyp Ref Expression
1 ipcau.v V=BaseW
2 ipcau.h ,˙=𝑖W
3 ipcau.n N=normW
4 eqid toCPreHilW=toCPreHilW
5 eqid ScalarW=ScalarW
6 simp1 WCPreHilXVYVWCPreHil
7 cphphl WCPreHilWPreHil
8 6 7 syl WCPreHilXVYVWPreHil
9 eqid BaseScalarW=BaseScalarW
10 5 9 cphsca WCPreHilScalarW=fld𝑠BaseScalarW
11 6 10 syl WCPreHilXVYVScalarW=fld𝑠BaseScalarW
12 5 9 cphsqrtcl WCPreHilxBaseScalarWx0xxBaseScalarW
13 6 12 sylan WCPreHilXVYVxBaseScalarWx0xxBaseScalarW
14 1 2 ipge0 WCPreHilxV0x,˙x
15 6 14 sylan WCPreHilXVYVxV0x,˙x
16 eqid normtoCPreHilW=normtoCPreHilW
17 eqid Y,˙XY,˙Y=Y,˙XY,˙Y
18 simp2 WCPreHilXVYVXV
19 simp3 WCPreHilXVYVYV
20 4 1 5 8 11 2 13 15 9 16 17 18 19 ipcau2 WCPreHilXVYVX,˙YnormtoCPreHilWXnormtoCPreHilWY
21 4 3 cphtcphnm WCPreHilN=normtoCPreHilW
22 6 21 syl WCPreHilXVYVN=normtoCPreHilW
23 22 fveq1d WCPreHilXVYVNX=normtoCPreHilWX
24 22 fveq1d WCPreHilXVYVNY=normtoCPreHilWY
25 23 24 oveq12d WCPreHilXVYVNXNY=normtoCPreHilWXnormtoCPreHilWY
26 20 25 breqtrrd WCPreHilXVYVX,˙YNXNY