Metamath Proof Explorer


Theorem cphsca

Description: A subcomplex pre-Hilbert space is a vector space over a subfield of CCfld . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f F=ScalarW
cphsca.k K=BaseF
Assertion cphsca WCPreHilF=fld𝑠K

Proof

Step Hyp Ref Expression
1 cphsca.f F=ScalarW
2 cphsca.k K=BaseF
3 eqid BaseW=BaseW
4 eqid 𝑖W=𝑖W
5 eqid normW=normW
6 3 4 5 1 2 iscph WCPreHilWPreHilWNrmModF=fld𝑠KK0+∞KnormW=xBaseWx𝑖Wx
7 6 simp1bi WCPreHilWPreHilWNrmModF=fld𝑠K
8 7 simp3d WCPreHilF=fld𝑠K