| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reipcl.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | reipcl.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | cphngp |  |-  ( W e. CPreHil -> W e. NrmGrp ) | 
						
							| 4 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 5 | 1 4 | nmcl |  |-  ( ( W e. NrmGrp /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR ) | 
						
							| 6 | 3 5 | sylan |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR ) | 
						
							| 7 | 6 | sqge0d |  |-  ( ( W e. CPreHil /\ A e. V ) -> 0 <_ ( ( ( norm ` W ) ` A ) ^ 2 ) ) | 
						
							| 8 | 1 2 4 | nmsq |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( ( norm ` W ) ` A ) ^ 2 ) = ( A ., A ) ) | 
						
							| 9 | 7 8 | breqtrd |  |-  ( ( W e. CPreHil /\ A e. V ) -> 0 <_ ( A ., A ) ) |