| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 5 | 4 | clmcj |  |-  ( W e. CMod -> * = ( *r ` ( Scalar ` W ) ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( W e. CPreHil -> * = ( *r ` ( Scalar ` W ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> * = ( *r ` ( Scalar ` W ) ) ) | 
						
							| 8 | 7 | fveq1d |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) ) | 
						
							| 9 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 10 |  | eqid |  |-  ( *r ` ( Scalar ` W ) ) = ( *r ` ( Scalar ` W ) ) | 
						
							| 11 | 4 1 2 10 | ipcj |  |-  ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) = ( B ., A ) ) | 
						
							| 12 | 9 11 | syl3an1 |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) = ( B ., A ) ) | 
						
							| 13 | 8 12 | eqtrd |  |-  ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( B ., A ) ) |